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Analytic number theory:

Quantum field theory

String theory

➢ Divergent series and smooth asymptotics
➢ η class of smooth cutoff functions and generalised 

functions
➢ Riemann zeta and extension to non-integer s for R(s)>1.
➢ Asymptotics of distributions

➢ Quasiasymptotics, Tauberian theorems, etc.
➢ Laplace transform and other interesting relations

➢ Modular forms and L-series
➢ Resurgence theory

➢ η regularisation as a general symmetry preserving method 
➢ Gauge theory and master equations
➢ Broader structure of η regularisation + relation between 

different η’s
➢ Capturing all common regularisation methods

➢ Anomalies
➢ Curved spacetime
➢ Generalisation to n-loops

➢ String amplitudes
➢ Gross-Mende
➢ Handle operators
➢ Analytic and/or non-analytic structure of UV divergences

➢ η regularisation in moduli space
➢ Schwinger representation and worldline formalism
➢ String species scale and smooth asymptotics

Motivations: UV 
finiteness of string 
amplitudes, and the 
longstanding hope 
quantum gravity will act 
as a universal regulator 
in the lower-energy 
limit of QFT.
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Some examples of 
ongoing and future 
research directions



Sums of integer powers

Consider the following sums of integer powers written in terms of their partial sums:

Classically, when analysing infinite series we might consider the definition 
of divergence in the Cauchy sense: 1) a series that grows in absolute value 
without limit or, 2) a series that is bounded but whose sequence of partial 
sums does not approximate any specific value.

Examples in physics tells us 
that the sum of the 
naturals should be 
attributed the value 
-1/12.
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Divergent series

Formally applying values s = 1,2,… one will obtain:

Compare the partial sums with the values given by the Riemann zeta function Tao, 2011

More generally, after analytic continuation:

Much has been said of these rather bizarre, if not altogether 
absurd, formulae. They were of course also made famous by 
Ramanujan.

• They do not appear coherent or reasonable because, as 
written, these formulae are characterised by positive 
summands on the left-hand side appearing to equate to 
some negative or zero value.

• Comparing with the previous partial sums, one can try to 
inspect the partial sums of these divergent series. But there 
is no obvious relationship with these constant values.
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Compare divergent series and partial sums

where        denotes the Bernoulli numbers. 

In the limit N -> ∞ Faulhaber’s formula breaks down. Quite simply, this is because in the Cauchy 
sense an infinite series is divergent. 

Define then the previous partial sums can be expressed as special cases of Faulhaber’s formula  

Tao, 2011

Comparing the partial sums behaviour with the divergent series, Terence Tao shows: if N is considered a real number, then this 
sum has jump discontinuities (of the first kind) at each positive integer value of N. 
• In short, when we use partial sums to sum an infinite series, we truncate the series at some finite value N.

• And so we can think of the partial sum as modifying the infinite series with a step function
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• In the traditional partial sums, the discontinuities that produce various artefacts arise due to discretisation as a result of 
the abrupt truncation of the sum at some N. 



Tao’s method of smooth summation

Instead, as Tao motivates, we can consider smooth sums of the form

in which the notion of convergence is now defined as

This leads to the generalised Euler-Maclaurin formula

where

We define a smooth cutoff function η(x) : R+ → R that is a bounded function of compact support, which is taken to be the 
interval [0,1]. This means that x → ∞ η(x) = 0  and η(0) = 1. 

Tao, 2011
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Relation to the zeta function

where

From the generalised Euler-Maclaurin formula, smooth summation can be related to the Riemann zeta function:

The overall divergent sum can be decomposed into a finite part and an infinite part. The finite piece doesn’t depend on the 
choice of regulator.

This is true if η(x) is a sufficiently smooth function. 

Notice: the divergent pieces of the smooth sums scale like                          which is scheme dependent. 

So for the correct choice of cutoff the integral can be killed completely, thus exposing the unique finite value of the divergent 
series as perhaps the most natural value.

Tao, 2011
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is the Mellin transform of the smooth cutoff.



Example: Sums of powers
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Consider again the sums of integer powers. Their smooth 
asymptotics give:

The task to regularise any divergent series essentially reduces to the appropriate choice of regulator that kills the integral

For example, for s = 0, we may equivalently write

which, after killing the integral, gives

where the value -1/2 is revealed as the cutoff independent part of the sum. 



Extending Tao’s method

We show that many of the key ideas of Tao’s method can be extended.

One important extension, we show (with proof) that the smooth regulating function η can 
be extended to the much more general class of Schwartz functions.

where

is defined to be a Schwartz function if for every r ≥ 0
the rth derivative exists and goes rapidly to zero. 
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Even more generally, the class of smooth cutoff functions η can be any C∞ function so long that we can ensure η(0)=1.

Example: any function that displays exponential decay at infinity 
will typically fall into the Schwartz class.



Another extension: Polynomial series

Consider the infinite sum where is a polynomial of degree z.

From the generalised Euler-Maclaurin formula in which we define we show with proof

Due to extending to be Schwartz, it can be shown crucially that the integral in the remainder term of the Euler-
Maclaurin formula is bounded and goes like O(1/N).

Importantly, we see  is the Mellin transform of the smooth regulator function.

Observation: We find in general that power law divergences are regulator dependent and weighted by the 
corresponding Mellin transform.

• This is a feature reminiscent of QFT.
• Interestingly, the regulator dependence in the above raises the possibility that there are families of enhanced 

regulators for which the divergences vanish altogether!
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Enhanced regulators

Definition: an enhanced regulator is one for which the Mellin transform                                                 vanishes for 
integer values of s ≥ 0.

An extremely elegant example of an enhanced regulator of order s is given by

where and s is any natural number.

For θ = 0 and s = 1 we recover the astonishingly beautiful enhanced regulator of order one

from which it can be inferred

Note: We also define super-enhanced regulators for polynomial series, and for both monomial and polynomial cases we 
have defined an algorithm for finding enhanced and super-regulators of any given order given for any Schwartz function.

for the sum of natural numbers.
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Generalising to QFT: Divergent integrals at one-loop

• From a physics point of view, this interpretation shares the 
philosophy of dimensional regularisation and is 
mathematically similar to the concept of mollification. 

This represents a second important extension to Tao’s method: 
we observe that the regulator cutoff may be interpreted as 
entering via a modification of the integration measure. 
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We’re motivated to ask an interesting question: can the method of smoothed asymptotics be extended to divergent 
Feynman integrals of quantum field theory?

For infinite series, smoothed asymptotics amounts to replacing an infinite sum with a smooth regulating function. This 
essentially means we replace an infinite sum with a smoothly weighted infinite sum

The generalisation of this to divergent loop integrals is straightforward: working in Euclidean signature, 
we replace the loop integral with a smoothly weighted loop integral

In our first paper [2401.10981] we make 
the simplest choice for η(x) such that x = 
k/Λ. More general choices are possible, and 
we start to explore them in our second 
paper (forthcoming).

where is the norm of the Euclidean four-momentum and Λ is the cut-off scale.



Generalising to QFTs: Naïve example at one-loop

The naïve observation is that we can regularise any divergent Feynman integral at one-loop. 
• It is generally easy to regularise divergent integrals. The hard part is to do it consistently and for all QFTs. 
• Any regularisation prescription worth its salt should satisfy locality, causality, and the Ward identity. 
• So the question is, how do we formalise these naïve observations?

Example at one-loop

After Feynman parameterisation and Wick rotating to Euclidean space

We can now follow our regularisation procedure by including a smooth cutoff

Using change of variables and some minor computation we have two integrals
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Irreducible loop integrals (one-fold ILIs) at one-loop 

In order to define a consistent and useful regularisation prescription, we utilise the concept 
of irreducible loop integrals (ILIs) as first introduced in [Wu, 2002].

In general, the set of ILIs can be written as the following master integrals:

• All one-loop Feynman integrals can be reduced 
to their respective ILIs.

• The concept of ILIs can be generalised to 
arbitrary loop order.

• The mass factor M is a function of Feynman 
parameters, external momenta, and corresponding 
mass scales. 

• The number in the subscript labels the 
power counting dimension (of energy-momentum).

• Here α = -1,0,1,2,… and, for the case where α = 
0 and α = -1, one obtains the corresponding 
logarithmically and quadratically divergence 
integrals at one-loop, respectively.
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Regularised ILIs at one-loop 

To regularise any divergent Feynman integral at one-loop, we must first apply Feynman parametrisation (sometimes 
repeatedly) to the amplitude as a whole, then reduce the integral to the appropriate ILIs.

Given that all one-loop integrals can be expressed in terms of the one-fold ILIs by way of the Feynman parameter method, we 
see that the divergences are thus completely characterized by these master integrals.

For example, we have the following master set of regularised integrals (in 4-dimensional Euclidean space) as related to the 
set of ILIs at one-loop:
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Regularised ILIs at one-loop: Decomposition and asymptotics
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Making use of partial fraction decomposition, the regularised tensor ILIs can be written explicitly in terms 
of scalar counterparts

And so, it suffices to study the η regulated scalar ILIs and the structure of the divergences for different values of α.
• Most interesting case is for α ≤ 0, where the integrals diverge as Λ → ∞ and take the following asymptotic form 

Here s is any natural number.



Gauge theory (one-loop): Vacuum polarisation and Ward identities

For general non-Abelian gauge theory can write the vacuum polarisation function

which we can then write in terms of ILIs
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From this analysis we are led to the following gauge consistency conditions in the asymptotic limit

We can apply these conditions in η regularisation using identities like                                                             from a previous slide
as well as the decomposition formulae

where terms proportional to p satisfy the Ward identity



Gauge theory (one-loop): Vacuum polarisation and Ward identities

For the convergent ILIs with α ≥ 1, the asymptotic formulae can be used to show that the gauge 
consistency conditions hold automatically in the limit as Λ → ∞, as expected.

For α = 0:

After plugging in the asymptotics, we obtain logarithmic divergences that cancel. We are therefore left with the remaining 
finite pieces that define the following constraints

The most interesting cases to study are for α = -1, 0.

This gives our first glimpse at the yet to be defined relation between different η class regulators.
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Gauge theory (one-loop): Vacuum polarisation and Ward identities

For α = −1 we obtain quadratic and logarithmic divergences, with the 
latter once again cancelling. This leaves quadratic and finite pieces:

Now comes the big WOW moment:
In quite astonishing fashion, we find that in order to cancel the quadratic divergences the regulators      and       are determined 
to be enhanced regulators of order one. (These are of the very same type discussed on a number theoretic level).

And so we observe for the first time the connection between gauge 
invariance and the elimination of quadratic divergences in both 
divergent series and divergent loop integrals!

The remaining finite pieces then yield a set of constraints 
similar to what was found before:

Further insight into the consistency conditions arising for the finite parts, how the different η’s relate, and the 
broader structure of η regulators, is a topic of ongoing study.
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Connection to Schwinger representation

From number theory to physics: Introducing η regularisationRobert Smith

We have also found, as a preliminary result, that η regularisation can be related to Schwinger proper time.

The regularised ILIs can be written as 

For the simplest choice of η we have 

where



Concluding comments

❖ We have briefly described a new generalised, symmetry preserving regularisation prescription.

❖ η-regularisation seems to capture all other common regularisation schemes, as well as a number of less common 
generalised prescriptions. 

❖ It currently resembles what one would anticipate of a ‘master regularisation’.

❖ Amazingly, we have found a connection between number theory and the way to regulate divergent series (so that the 
sum converges to a unique value) and the underlying symmetries of fundamental physics!

❖ In addition to string theory and QFT investigations, there are a lot of interesting results in analytic number theory that we 
are still trying to make sense of!
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Ongoing and future directions

As indicted at the outset of this talk, a lot of work is ongoing and the research programme we have defined promises 
many exciting future directions. Some works in progress with Tony Padilla given below:

• Second paper (forthcoming): exploring further gauge symmetry preservation and the broader structure of η regulators, 
including the role generalised η regulators plays with triangle anomaly.

• In collaboration with Benjamin Muntz (University of Nottingham): investigating smoothed asymptotics, the string species 
scale, and emergence in quantum gravity (i.e. emergence proposal from the string swampland programme).

• In collaboration with Murdock Grewar (Australian National University), exploring Fujikawa’s covariant formalism to look 
at non-perturbatively exact renormalisation and connections with smoothed asymptotics.

• Investigating further generalities with η regularisation and the ILI programme in collaboration with Kilian Möhling (TU 
Dresden).

I’m also currently investigating: 
-Generalisation to n-loops
-Cutkosky rules 
• Unitarity, locality, and causality

-Stringy η-class regulators:
• Moduli space cutoff, moduli graphs, analytic and non-analytic structure of 

string amplitudes;
• String master formula;
• Gross-Mende saddle points and UV completion on the worldline.
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Thanks!
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