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Analytic number theory:

Quantum field theory

String theory

➢ Divergent series and smooth 
asymptotics
➢ Define infinite class of smooth 

cutoff functions
➢ Extension from monomial series 

to all infinite polynomial series
➢ η-class regulators and analytic 

continuation
➢ Modular forms, L-series, and so on
➢ Resurgence theory

➢ η-regularisation as a general symmetry 
preserving method 
➢ Define formalism at one-loop
➢ Gauge theory and master 

equation
➢ Extension to n-loop order
➢ Yang-Mills
➢ Nambu-Jona-Lasinio model

Paper 1

Paper 2

Paper 3 and beyond

➢ String amplitudes
➢ Gross-Mende
➢ Handle operators

➢ Modular invariant regulators
➢ Schwinger representation and 

Worldline formalism

Motivations: UV 
finiteness of string 
amplitudes, and the 
longstanding hope 
quantum gravity will 
act as a universal 
regulator in the 
lower-energy limit of 
QFT.



Divergent series
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Consider the following sums of integer powers written in terms of their partial sums:

Classically, when analysing infinite series we might consider the definition 
of divergence in the Cauchy sense: 1) a series that grows in absolute value 
without limit or, 2) a series that is bounded but whose sequence of partial 
sums does not approximate any specific value.

Eg. Physics tells us that the 
sum of the naturals should 
be attributed the value 
-1/12



Divergent series
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The majority of issues with divergent series comes with the 
transition from partial sums to infinity, as notably exposed by 
Ramanujan. Ramanujan, like Euler, was fascinated with formal 
manipulation of infinite series.

If one wants to therefore make sense of divergent series, the task is in a certain sense to develop a theory 
that matches the partial sum behaviour of finite sums, but allows the result to be generalised to infinity. 

Much has been said of these rather bizarre, if not altogether 
absurd, formulae. The do not appear coherent or reasonable. 
Observe, for instance, as written these formulae are 
characterised by the fact that positive summands appear to 
equate to some negative or zero value.

If one formally applies values s = 1,2,… one will obtain:

Tao, 2011

More generally, after analytic continuation:



Tao’s method of smooth summation
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Instead we consider smooth sums of the form

in which the notion of convergence is now defined as

This leads to the generalised Euler-Maclaurin formula

where

Robert Smith

We define a smooth function η(x) : R+ → R that is a bounded function of compact support, which is taken to be 
the interval [0,1]. This means that x → ∞ η(x) = 0  and η(0) = 1. 

Tao, 2011



Relation to the zeta function
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where

From the generalised Euler-Maclaurin formula, smooth summation can be related to the Riemann zeta function:

or, more conveniently,

From the fact that the overall divergent sum can be 
decomposed into a finite part and an infinite part, it is clear that 
the finite piece doesn’t depend on the choice of regulator.

This is true if η(x) is a sufficiently smooth function. 

The divergent pieces of the smooth partial sums scale like                          which is scheme dependent. So for the correct 
choice of cutoff the integral can be killed completely, thus exposing the unique finite value of the divergent series as perhaps 
the most natural value.

Tao, 2011



Example: Sums of powers
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So the task to regularise any divergent series essentially reduces to the appropriate choice of regulator that kills the integral

Robert Smith

As an example, for the sums of integer powers it is easily found



Extending Tao’s method
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We show that many of the key ideas of Tao’s method can be extended. Two important extensions to 
Tao’s method for number theoretic sums:

1) We observe that the regulator cutoff may be interpreted as entering via a modification of 
the integration measure. From a physics point of view, this interpretation shares the 
philosophy of dimensional regularisation and is mathematically similar to the concept of 
mollification. 

2) We show (with proof) that the smooth cutoff function can be extended to the much 
more general class of Schwartz functions.

where

Then                           is defined to be a Schwartz function if for every r ≥ 0
the rth derivative exists and goes rapidly to zero.

Furthermore, the class of smooth cutoff functions η can be any C∞ function 
so long that we can also ensure η(0)=1.



Generalising to QFTs: Naïve example
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The naïve observation is that we can regularise any divergent Feynman integral at one-loop. 
• It is generally easy to regularise divergent integrals. The hard part is to do it consistently and for all QFTs. 
• Any regularisation prescription worth its salt should satisfy locality, causality, and the Ward identity. 
• So the question is, how do we formalise these naïve observations?

Example at one-loop

After Feynman parameterisation and Wick rotating to Euclidean space

We can now follow our regularisation procedure by including a smooth cutoff

Using change of variables and some minor computation we have two integrals



Irreducible loop integrals (one-fold ILIs) at one-loop 
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In order to define a consistent and useful regularisation prescription, we utilise the concept 
of irreducible loop integrals (ILIs) as first introduced in [0209021 - Wu].

In general, the set of ILIs can be written as follows:

• All one-loop Feynman integrals can be reduced 
to their respective ILIs.

• The concept of ILIs can be generalised to 
arbitrary loop order.

• The mass factor M is a function of Feynman 
parameters, external momenta, and corresponding 
mass scales. 

• The number in the subscript labels the 
power counting dimension (of energy-momentum).

• Here α = -1,0,1,2,… and, for the case where α = 
0 and α = -1, one obtains the corresponding 
logarithmically and quadratically divergence 
integrals at one-loop, respectively.

Robert Smith



Regularised ILIs at one-loop 

From number theory to physics: Regularising QFTs

To regularise any divergent Feynman integral at one-loop, we must first apply Feynman parametrisation (sometimes 
repeatedly) to the amplitude as a whole, then reduce the integral to the appropriate ILIs.

Given that all one-loop integrals can be expressed in terms of the one-fold ILIs by way of the Feynman parameter method, we 
see that the divergences are thus completely characterized by these one-fold ILIs.

• Note: all divergent Feynman integrals are evaluated in Euclidean space. So once we have the integral represented as 
its appropriate ILI, we perform a Wick rotation as usual and then proceed to compute the integral. 

For example, we have the following master set of regularised integrals as related to the set of ILIs at one-loop:

 

Robert Smith

Here we have made the simplest choice for 
η(x) such that x = k/Λ. More general choices 
are possible.



Generalising to QFTs: Introducing η-regularisation
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At one-loop, the general procedure to regulate any divergent Feynman integral entails:

1. use Feynman parametrisation and shift the integration variable to 
reduce the integral to its corresponding ILI;

2. Wick rotate from four-dimensional Minkowski spacetime to four-
dimensional Euclidean space;

3. evaluate the perturbative Feynman integrals in terms of their 
corresponding ILIs by replacing the loop integration measure 

4. further decompose the integral if necessary, and use change of 
variables.



Gauge theory: Ward identity (one-loop)
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Specialising to the case of QED we can write the vacuum 
polarisation function

The terms proportional to p satisfy the Ward identity, and so we are led to the condition

One interesting result is that we derive a master equation written in η-language 

Robert Smith

which we can write in terms of ILIs

Any regularisation prescription that is symmetry preserving must satisfy this equation. For example, there is a choice of η 
that captures dimensional regularisation. As expected, we find dim reg satisfies this equation.

In satisfying this equation for general η, we find a term that must be killed. This term happens to be precisely an 
enhanced regulator of order one (from previous number theory discussion)! And so it is killed and everything works out!



Generalising to 2-loops and higher
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Problem: the main issue with the ILI formalism at higher loop order is the treatment of overlapping divergences.

Theorem [Wu, 2002; Huang et al., 2013; Bai and Wu, 2017; ]: a divergent Feynman integral at 2-loop order and higher, the 
structures of UV contributions can be extracted as

Crucially, at multiloop level sub-contributions are completely captured by the UVDP integral. A key observation that makes 
the ILI formalism work at n-loops is the fact that the ILI and UVDP integrals actually comprise αβγ diagrams of ‘t Hooft and 
Veltman [‘t Hooft and Veltman 72, Ashmore 72, Bollini and Giambiaggi 72]:

We leverage these arguments, and use the ILI programme to extend the generalised η-regularisation to arbitrarily 
loop order.

At 1-loop since there are no sub-divergences so we simply have

Theorem [Huang et al., 2013]: There is a one-to-one correspondence between sub-contributions in αβγ diagrams and 
those in UVDP integrals.



Generalising to 2-loops and higher
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The easiest way to see this is to review 2-loop calculation, because the extension from 2-loops 
to arbitrary loop order is straightforward.

Using Feynman parameterisation higher loop integrals can in general be expressed in the form of the 
following general overlapping integrals known as α, β, γ diagrams

Using the formal for Feynman parameters

We can rewrite the α β γ integral 

[Wu, 2002] 



Generalising to 2-loops and higher
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To get this integral in sufficient ILI form, we reparameterise the divergence and transform it to u-space (i.e., UV divergence 
preserving parameterisation. In the present case, we can use the formula

After some work, the 2-loop scalar-like integral takes the form

in which it is noticed that the final k_2 integral is a one-fold ILI for the two-loop graphs. It follows now that we can 
regularise, similarly as in the 1-loop case.

Robert Smith

[Wu, 2002] 
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To give a quick example of what the regularised integral looks like in this case, upon introducing a smooth cutoff and using 
change of variables we have

Note that depending on the value of α,β,γ the integrals will be logarithmically or quadratically divergent.

Robert Smith



n-fold ILIs
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Much more generally, we can define n-fold ILIs. For example, one form of the scalar-like n-fold ILI is given as

We can similarly write tensor-like n-fold ILIs. Upon use of UVDP parameterisation we have for both cases

where

Then the regularisation proceeds similarly to what was discussed before. 

Wu, 2003



Stringy regulators
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From the view of studying string amplitudes, an early motivation was the observation that natural choices of η
 are typically multi-term exponentially decreasing functions. These tend to look quite stringy.

Indeed, from the view of string amplitudes, this sort of general exponential damping is what makes the scattering amplitudes 
soft in the UV. There are a number of insightful ways to probe this fact.

• For instance, string field theory propagators can be found to be dressed with an exponential decreasing term.
• Another example [Abel and Lewis, 2020]: in the Gross-Mende regime these exponential damped amplitudes can be 

seen quite explicitly. One can see that this exponential damping, which comes about as the exponential correction in 
the Green function (lowest mode in the tower of states) is associated with a saddle point in moduli space (a signature 
of stringy behaviour).

• We start to see in this analysis that we can basically ‘pick off’ stringy η’s. The idea is then to map them to QFT via 
the worldline formalism.

• Another interest bit of work involves the handle operator approach to string amplitudes [Skliros and Lust, 2019]. 
• Highly technical; in short, it is possible to extract the Feynman propagator and ongoing work is investigating the 

way in which stringy η’s can be preserved as an artefact of UV finiteness on the level low-energy QFT.
• We have also found ways to define modular invariant η-class regulators!

These are just a few examples of ongoing work that completes η-regularisation as a possible universal regulator from 
quantum gravity!

Robert Smith



Concluding comments

From number theory to physics: Regularising QFTsRobert Smith

❖ We have briefly described a new generalised, symmetry preserving regularisation prescription.
❖ η-regularisation captures all other common regularisation schemes, as well as a number of less common generalised 

prescriptions. 
❖ It currently resembles what one would anticipate of a ‘master regularisation’.

❖ In addition to string theory and QFT, there are a lot of interesting results in analytic number theory that we are still trying 
to make sense of!
❖ Work is ongoing to better understand numerous sum and integral identities.
❖ Examples: further study of η-regularisation and its relation to analytic continuation.

❖ Modular forms
❖ Resurgence theory
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